Supplemental Table 1 A survey of AAS prediction methods and their observations.

Groups with key observations have been highlighted in bold.

<table>
<thead>
<tr>
<th>Group</th>
<th>Observations</th>
</tr>
</thead>
</table>
| Wang and Moult (2001) (77) | ● Observed that disease mutations can be distinguished from neutral SNPs using structure.
● Modeled amino acid change on to structure and observed that 83% of disease SNPs affect protein stability; 5% affect ligand binding. |
● ~20% of nsSNPs estimated to be damaging to protein function. To resolve the large number of damaging nsSNPs with the fecundity of inbred marriages, damaging nsSNPs must have mild effects. |
| Chasman and Adams (2001) (9) | ● Accessibility, B-factor and sequence conservation are the most useful for prediction according to ANOVA, PCA and correlation analysis. Implemented a prediction method based on the three features.
● A protein structure that has ≥ 60% sequence identity to the input protein gives the best performance, with no increase in performance as sequence identity increases. |
● Using an AAS prediction method has better accuracy than an amino acid substitution scoring matrix.
● The fraction of nsSNPs predicted to be damaging is comparable to the false positive error so the number of damaging nsSNPs is low and cannot be estimated. |
| Saunders and Baker (2002) (59) | ● Found that the most accurate predictions are obtained using a combination of sequence and structural features.
● Estimated Cβ density values from ab initio structure prediction which can be beneficial when there are few sequences available (≤ 3 homologues). |
| Terp et al. (2002) (72) | ● Studied 20 biophysical parameters, 9 of which were significant for prediction.
● Score includes the likelihood that a mutation will be observed clinically. The disease-causing mutation is severe enough to be included in a disease database, but not preclinically lethal. |
| Mooney et al. (2003, 2003) (41, 42) | ● Using sequence homology, calculate negative entropy to measure conservation.
● Found degree of conservation scores for mutations are correlated with the severity of the phenotype for syndromes caused by mutations in the androgen receptor. |
<table>
<thead>
<tr>
<th>Group</th>
<th>Observations</th>
</tr>
</thead>
</table>
| Stitziel et al. (2003, 2004) (64, 65) | ● TopoSNP uses sequence conservation and structure. Structure is used to classify if the AAS is located on a surface, in a pocket, or buried. Under this classification, only 3% of disease-associated mutations were buried.
 ● Using structure, 88% of disease-associated mutations are in pockets but 68% of nondisease SNPs are also in these pockets. |
 ● Methods use sequence and structure. Structural attributes (secondary structure and solvent accessibility) are predicted and homologous structure is not necessary. |
 ● Some disease-causing mutations predicted to be gain-of-function rather than loss-of-function. |
| del sol Mesa et al. (2003) (14) | ● Implemented three different methods to partition a protein family into subfamilies for better prediction of positions involved in functional specificity. |
| Fleming et al. (2003) (19) | ● Identify conserved sites through sliding window.
 ● Incorporates DNA sequence to identify sites evolving under positive selection. |
 ● Altering tree structure decreases performance; altering branch lengths does not affect performance as much. |
| Herrgard et al. (2003) (27) | ● Using sequence and structure, this prediction method focuses on mutations in the active site of an enzyme to find residues that affect catalytic ability rather than protein stability.
 ● Average prediction accuracy for deleterious mutations 85%, prediction for nondeleterious mutations is 81%. |
| Cai et al. (2004) (7) | ● Bayesian network evaluating only positions residing inside a PFAM domain. Also uses structural annotation provided by SWISS-PROT. |
| Lau and Chasman (2004) (33) | ● From a set of sequences, chooses the optimal sequence subalignment which gives as many tolerated amino acids but excludes proteins that are functionally divergent from the query protein.
 ● Performs better than SIFT. |
| Balasubramanian et al. (2005) (2) | ● Uses logistic regression analysis based on sequence and structural features to obtain high prediction accuracy on G-protein coupled receptors. |
| Stone and Sidow (2005) (67) | ● Sequence-based MAPP method, which performs better than SIFT.
 ● Takes a protein alignment and a tree for input.
 ● Quantified the benefit of using orthologues instead of paralogues in sequence alignment. |
<table>
<thead>
<tr>
<th>Group</th>
<th>Observations</th>
</tr>
</thead>
</table>
| Yue and Moult (2005) (82, 83) | - Two methods based on support vector machine. One is sequence-only, one is structure-only.
- Larger change in free energy is correlated with a higher fraction of disease mutations.
- SwissProt functional annotation decreases overall accuracy.
- Protein models based on structure with >= 40% sequence identity has comparable performance to using the structure of the input protein.
- Sequence-based method has better overall performance compared to structure.
- When number of sequences is < 10, false positive rate increases but false negative rate stays the same. |